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I. INTRODUCTION & FOUNDATION

• Thermal motion of charges in a resistor gives rise 
to random fluctuations of current & voltage

• For passive device, at physical temperature T, 
with small Δf, 

fTkhfe
hffavailP

B
Δ

1)/()(
−

=

Nyquist Theorem & Noise Temperature [1 – 4]

v(t), i(t)
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• Limits
– small f :  <Pavail> ≈ kBT Δf [1 – hf/(2kBT)]

≈ kBT Δf 
– large f :  → 0
– knee occurs around f(GHz) ≈ 20 T(K)

• Quantum effect
– h/kB = 0.04799 K/GHz
– So at 290 K, 1 % effect at 116 GHz

at 100 K, 1 % effect at 40 GHz
at 100 K, 0.1 % effect at 4 GHz
30 K @ 40 GHz → 6.4%, 0.26 dB
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• What about active devices?  Can we define a noise 
temperature?

• Several different definitions are used: [5]
– delivered vs. available power
– with or without quantum effect

i.e., does Tnoise ∝ Pavail (“power” definition), or is Tnoise
the physical temperature that would result in that value 
of Pavail (“equivalent-physical-temperature” definition)?

• We (I) will use the “power” definition,
noise temp ≡ available spectral noise-power 
divided by Boltzmann’s constant.

• It is the common choice in international 
comparisons [6] and elsewhere [7].

• It is much more convenient for amplifier noise 
considerations, at least for careful ones.  (See 
discussion below, under Noise Figure and 
Parameters.)
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• So  Pavail ≡ kBTnoiseΔf
• And for passive devices,

• Convenient to define “Excess noise ratio”
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No matter what definition of noise temperature you choose,
it is helpful to state your choice.

T=9500 K  ⇒ ENR ≈ 15.02 dB

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −≡
0

0
10log10)(

T
TTdBENR avail

avail T0 = 290 K

T=1000 K  ⇒ ENR ≈ 3.89 dB

MICROWAVE NETWORKS & NOISE [8,9]

• Assume lossless lines, single mode.

• Travelling-wave amplitudes a, b.

• Normalized such that Pdel = |a|2–|b|2 is the 
spectral power density.

b a
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• Describe (linear) one-ports by

• And (linear) two-ports by
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• Temperature translation through a passive,  linear, 
2-port (attenuator, adapter, line, ...)

1 2

G Ta

T2T1
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Say T1 = Ta , then T2 must = Ta , so
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aaa

TTf
TfTTT
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and therefore

aTTT )1( 211212 αα −+=

• Ambient standard: matched load, water jacket, 
thermistor, thermal paste. 
uTa = 0.1 K

• Cryogenic standards: liquid nitrogen, both 
coaxial & waveguide.

• Coaxial standards: 30 MHz, 60 MHz, 
1 – 12.4 GHz. uTC ≈ 0.6 K (coaxial)

Noise Standards [10 – 13]



11

• Waveguide standards: 8.2 – 110 GHz, in 7 bands. 
(But radiometers only to 65 GHz.)

Uncertainties in Waveguide Standards
Band Frequency (GHz) Uncertainty (K)

WR-90 8.2 – 12.4 0.14
WR-62 12.4 – 18 0.18
WR-42 18 – 26.5 0.21
WR-28 26.5 – 40 0.14
WR-22 33 – 50 0.31
WR-15 50 – 75 0.38
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• Overlap is a good check:
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• Radiometer: measures “radiated” power. For us, 
measures delivered power (in w.g. or transmission 
line), & we convert to available power & therefore to 
noise temperature.

• Two principal types of radiometer for noise-
temperature measurements are Dicke radiometer and 
total-power radiometer [14].

• Total-power radiometer is most common for lab use, & 
that’s what we’ll discuss.

Total-Power Radiometer [14 - 17]
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• NIST Coaxial Radiometer [17], General Features:
– Total-power radiometer, isolated (60 dB), baseband IF, 

double sideband, 5 MHz BW, thermistor detector. 

–

– Radiometer eqn:   ( )
( )( )aCryo
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• Coaxial Radiometer “NFRad” [17]

DUT Port(s)
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• RF Section (8 - 12.4 GHz unit):

Input

Load

LO

12.4 GHz
    LPF

Mixer
26 dB Gain
1 dB compression
@ +10 dBm out

IF out

Level control
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20 dB

• Stability
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Some Characteristics & Tests
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• Linearity is critical
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• Repeatability of connections; stability of reflection 
coefficients.

0.00 4.00 8.00 12.00 16.00 20.00

Frequency (GHz)

0.00

0.20

0.40

0.60

0.80

Re
fle

ct
io

n 
Co

ef
fic

ie
nt

8-12 GHz Radiometer Thru
Port 2 of Switchhead

Measurement: 01/06/00

Measurement: 04/30/99

• Simple case (matched): 

typically around 1 %
about 1 or 2%small uncert,

but linearity is 
a concern

Uncert “should”
be negligible

)(
)1(
)1(

aTST
S

Y
xY

aTxT −
−
−

+=

Uncertainties

xx

hh

M
M

η
η

For the ENR, this ⇒ u(ENR) ≈ 0.10 dB to 0.15 dB
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• Simple-case uncerts (cont’d)
– drift: temperature stability/control important

(effect minimized by frequent switching to standards)
– connector variability: hard to do much better than 0.1%, 

easy to do considerably worse.
– ΔGrad, ΔTrad (due to ΔΓ):  depends on details of system, 

can make a crude estimate:

Trev ∼ Te ,  ⏐ΔΓ⏐ ∼ 0.05 or 0.1

So ΔTin ∼ 0.05 or 0.1×Te

• Uncertainties (more careful case)
(Numbers are for NIST case) [17,18]

– Radiometer equation: 

– Ambient standard:
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– Cryogenic standard:

– Path asymmetry: (zero if connect to same port)

– Mismatch:
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– Connectors:

– Other:  Nonlinearity, imperfect isolation, power ratio 
measurement, and broadband mismatch/frequency 
offset all lead to small 
(<0.1%) uncertainties for Tx around 10 000 K (for 
us/NIST).

%069.0%053.00,)(10
)( touGHzf
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(depending on connector type)
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• uB(T)/T as a function of T
Standard relative uncertainty (1σ)
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II. AMPLIFIER & TRANSISTOR 
NOISE MEASUREMENTS

• Want a measure of how much noise an amplifier adds 
to a signal or how much it degrades the S/N ratio.

• Define Noise Figure, IEEE [19]: (at a given frequency) 
the ratio of total output noise power per unit bandwidth 
to the portion of the output noise power which is due to 
the input noise, evaluated for the case where the input 
noise power is kB T0 , where T0 = 290 K.  (vacuum 
fluctuation comment)

• Noise figure & signal to noise ratio[20]:

Noise Figure Defined

F
KG

ampNKG

ampNKGinGS

KinS

outNS
inNS

=
×

+×
=

+×
=

290

290

)290/(

290/

)/(

)/(
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• Effective input noise temperature: 

Note:  G, F, Te all depend on Γsource.
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So Noise Figure becomes

0

)0(

GT
eTTG

inNoiseG
outNoiseF

+
=

×
=

Th G Nout,h = GkB(Th + Te)

Tc G Nout,c = GkB(Tc + Te)

)(
,,

cThTBk
coutNhoutN

G
−

−
=         

1,,

,,
−

−
=

−

−
=

Y
cYThT

coutNhoutN
cThoutNhTcoutN

eT   where Y = Nout,h/Nout,c 

Combine & solve:

Simple Case Measurement, all Γ ’s equal

0
)1(

1
0

1
TY

cYT
h

T

T
eT

F
−

−
+=+=



24

• Quantum I: Equivalent black-body definition vs. 
“power” definition.

Noise-Temperature Definition Revisited

Nin Nout = GNin + Namp

“Power” definition:  N = kT,
then Nin = kTin , Nout = kTout , Namp = kGTe , 

so kTout = kG(Tin + Te)
and  Tout = G(Tin + Te)

“Equivalent black-body temperature” definition:   
1/ −

= kThfe
hfN  

so Nout = GNin + Namp  becomes (after dividing by k) 
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• Quantum II: Vacuum-fluctuation contribution
– Continual “sea” of virtual particle-antiparticle pairs everywhere.
– Cannot extract energy from them (from the vacuum), but they 

can effect physical processes; & in particular they add noise to
active electronic devices [21 – 23].

– They result in an additional effective input noise temperature of 
hf/2kB at the inut of an amplifier.

– This is very small, usually negligible at microwave freqeuncies, 
Tvac = 0.24 K at 10 GHz, but it is there, & there are some cases 
where it is not negligible [24].

– It results in a minimum possible output noise from an amplifier,
Nout,min = Ghf/2.

– Not yet a general agreement on how to include Tvac in definition 
of noise temperatures.

– Can include it in Te (blame it on the amp) 

or can include it in Tin .
– We’ll include it in Tin [7, 24].
– Also a question of whether to include Tvac as part of the source TR

(as in [7]) or as a separate input source [24].

TR

( )evacRout TTTGT ++=

Tin

Te
′
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– I prefer keeping it as a separate input [24].

– One reason: case of large separation distance (especially in 
remote sensing, for example)

– Note: get same/consistent results, independent of which way you 
group things.

TR

TR

Tvac

• Simple case was 

• But that’s just for one value of Γsource.  Want to 
determine F or Te for any Γ source.  So parameterize 
dependence on Γ source.

• Several parameterizations in use; most common 
are variants of the IEEE [25] form.  

Noise Parameters, IEEE Representation
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• Equivalent circuit:

• (Noise out)/(Noise in) depends on impedance of input 
termination, NF = NF(ZS) or NF(ΓS), & Te = Te(ZS or 
ΓS),
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4 parameters: Te,min , t = 4RnT0/Z0 , and complex Γopt .

Note: many equivalent forms of IEEE representation; this one is from [26].

• For microwave radiometry, wave representation 
[26 – 31] provides more flexibility.  

• Linear 2-port:
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• Noise correlation matrix is defined by

• Four real noise parameters:
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• So for Te we have

• Whereas IEEE parameterization is

• Can relate the two:
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• Many different methods [26, 28, 30, 32 – 43]. 
Most are based on IEEE parameterization.

• Basic idea of (almost) all methods is
– present amplifier (or device) with a variety of different 

known input terminations (Γ & T),
– have an equation for the “output” in terms of the noise 

parameters and known quantities
(Γ ’s,  T’s, S-parameters),

– determine noise parameters by a fit to the measured 
output.

– Need good distrib. of Γ ’s in complex plane.

Measuring Noise Parameters

• Can fit for noise figure [32]

Notes:
– Use tuner to get different Γ1, measure with Th and Tc for 

each Γ1 to get NF for that Γ1.
– Must correct for tuner to get Tin at 1. Must calibrate 

receiver for each value of Γ2
(or have isolator in front of receiver).

Noise
Source

Tuner DUT P

Th , Tc

1 2

⎟
⎠
⎞⎜

⎝
⎛ −+

−
+=

2
1

2

2
1

0
min

11

4

ΓΓ

ΓΓ

opt

optn
Z
RNFNF



31

• Or can fit for output power [33, 44, 45]. 
This is the most popular method now.

In practice, first measure noise parameters of 
receiver,

Then measure DUT + receiver

and extract DUT noise parameters.

Tuner
Noise
Source Receiver

Γi Γrec

P
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Γi , Tamb

DUT P

DUTTuner
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Γ2i Γrec

Receiver P

Γi Γ1

Sij

• Noise-matrix approach [30, 31, 40, 46] to 
measuring noise parameters:
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• Noise-Parameter Uncertainties
– Monte Carlo method is probably the most practical [35, 

46 – 49]
– Some general approximate features [46]:

• Uncerts in G and Tmin (& Fmin) are dominated by uncert in Th.  
0.1 dB uncert in Th → ∼ 0.1 dB uncert in G and Fmin.

• Uncerts in Γopt are dominated by uncerts in Γ G’s.  Uncert in Re 
or Im Γ opt is ∼ 3 or 4× uncert in Re or Im Γ G (for 13 
terminations).

• t (or Rn) is sensitive to just about everything.
• Tamb is not a major factor, because it is known much better than 

Th.  Note, however, that it could affect Th or the amplifier 
properties.

• Just like amplifier noise parameters—only harder.
• Harder due to probes and to device properties.
• Complications due to Probes:

– Must characterize probes: on-wafer standards ⇒ larger 
uncertainties for Γ ’s, S-parameters, Tin, Tout.

– Restricted range of Γ ’s (due to loss in probe).
– Potential contact problems, vibrations.

Measuring Noise Parameters on Wafer
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• Complications due to Device:

– If measuring an on-wafer amplifier, no additional 

device-related problems (assuming it’s well matched).

But for a transistor:

– Matching problems, large S11, S22 ⇒ larger corrections 

& therefore larger uncertainties.

– Large Γopt , near edge of Smith chart.

– Smaller noise figures/noise temps than amps.

Radiometer 
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•Procedure used at NIST [50, 51]:
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• Commercial Systems [e.g., 44, 45]: similar to general 
noise parameters (above), except that reference planes 
are on wafer.

• Must therefore calibrate at those reference planes on 
wafer.  Commonly done at probe tip, with an “off-
wafer” cal set.

Tuner
Noise
Sources Receiver PProbe Probe

Wafer

Γi Γrec

System Cal:

DUT

Γ2i ΓrecΓi Γ1

Sij

Tuner
Noise
Sources Probe Receiver PProbeDUT Measurement:

• To get properties of device itself, must remove effects of 
lines between the calibration reference planes (P1 and P2) 
and the device reference planes (T1 and T2).  To do so, 
measure auxiliary standards (short, open) between planes 
T1 and T2, and “deembed” [52].

P1 T1 P2T2
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• NIST on-wafer calibration (Statistical) calibrates at 
center of through (M) and translates back (to D).  
Would still need to “deembed” to get down to T.

12 μm back from
center of Thru

P D M
D

12 um
T

• So how do we convince ourselves that our noise-
parameter measurement results might be correct?

• Will give three tests:
– measure noise parameters of passive device, such as 

attenuator
– measure Trev

– Cascade test

Noise-Parameter Checks and Verification
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• Noise matrix of a passive device (such as an attenuator) 
is given by Bosma’s theorem,

• So for an attenuator at (noise) temperature Ta,

• So, measure noise parameters of an attenuator & see if 
you get the correct answers.  

Attenuator Test
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• Other passive devices as tests (especially on a 
wafer):
– Cold FET [53]
– Lange Coupler [54]

These have the advantage of being poorly matched, & 
therefore more similar to the devices of interest.
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• Trev test:  Measure noise temp from input of amplifier, 
when output is terminated in a matched load.

• Can show that for ΓLS21S12 small,

Trev Test [36, 40, 55]

( )2
1

1

1 Γ−
≈ XTrev

Matched
Load, Tamb

T1

1

• Full form is:

DUT
T 

or P

1
Matched Load

Tamb , ΓG

( )[ ]1221
1

1 1
1 NNNNT G +++

−
=

Γ

)1( 22

2112
111 S

SSS
G

G

Γ
ΓΓ
−

+=

( )

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−

=

−
=

=

−

−
=

*
12

22

2112
12

2

2

22

2112
2

11

2
22

22
12

1
Re2

1

1

1

Xk
S

SSN

Xk
S

SSN

XkN

Tk
S

S
N

B
G

G

B
G

G

B

ambB
G

G
G

Γ
Γ

Γ
Γ

Γ
Γ



38

• So measure Trev, compare to value predicted from 
the value of X1 from the noise-parameter 
determination.

• If working in terms of IEEE parameters, convert, 
using

( )

( )
.

1

1

,
1

,
1

1
1

2
11

*

min,1112

2

2

min,2

2

2

112
11min,1

opt

optopt
e

opt

opt
e

opt

opt
e

St
TSX

t
TX

St
STX

Γ

ΓΓ

Γ

Γ

Γ

Γ

+

−
−=

+
+=

+

−
+−=

Cascade Test [55]

• Connect an isolator 
(or other passive 2-port)
to amplifier input
& measure noise 
parameters of combination.

• X´ parameters can be written in terms of X
parameters (amp alone) and the S-parameters of 
amp and isolator.

• Using Bosma’s theorem and standard S-parameter 
algebra, can show

X, S

211´

X´, S´
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Note: could instead use an attenuator (for on wafer).

• Approximate expressions (for isolator case):
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X12' is small and (approximately) independent of amplifier;
excellent verification test.
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Samples of Test Results [55]
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Error bars are standard uncertainties (1σ).
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1

Error bars are standard uncertainties (1σ).

Trev test on wafer [56]
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III. REMOTE-SENSING 
RADIOMETRY: MICROWAVE 
BRIGHTNESS-TEMPERATURE 

STANDARDS

• NIST microwave radiometry effort
– Noise & antenna metrology have been conducted 

separately for over 30 years
– Recently began doing remote-sensing radiometry, 

combining the two

• NIST Optical Tech. Div. has such a program for 
UV, Visible, & IR [57]

• Need to develop analogous capabilities at 
microwave & mm-wave frequencies, providing a 
link between microwave remote-sensing 
measurements & NIST measurements & standards

Background
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• Microwave remote sensing, ideal case:

Black body,
Temperature T
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• Real case:
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• Calibration
– linear radiometers ⇒ need (≥) two standards for 

calibration
– need independent cal of targets, comparison to other 

radiometers, traceability

• Develop (& transfer) a standard for microwave 
brightness temperature

• Still in early stages, but some progress made

• Two approaches to brightness-temperature standard:
– Standard radiometer
– Standard target

• We have worked 
on both approaches.

Black body,
Temperature T
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• Radiometer measures TA,out; want to determine TB
(assume far field conditions)
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• So, 

• Control the background, 
• Then

• So we need α ≈ 1/L and ηAT
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• Environment
– not thermal-vac

– must control 
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• Will need a chamber to control background

Temperature-monitoring
Electronics

Waveguide
Radiometer

Cryogenic
Noise 
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Ambient 
Noise
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Horn

Target

Mounting
Plate

Temperature Control
And Alignment 
Systems

Temperature Sensors

Absorber

Aluminum Housing

Air circulator

Air Circulator

Waveguide Switch

• Approximate achievable uncertainties:

u(Ta) ≈ 0.2 K
u(TA,out) ≈ 0.3 – 0.5 K (for TA,out = 200 to 300 K,       

18 – 26.5 GHz)
u(ηAT) ≈ 0.003
u(α) ≈ 0.005

• So should be able to get
≈ 0.3 K to 0.7 K 

for TA,out = 200 to 300 K, 18 – 26.5 GHz
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• Measured antenna pattern for a standard-gain horn 
(SGH) on the near-field range

Demonstration Measurements



50

• Integrate pattern to get ηAT ; value depends on 
frequency & distance. At 26 GHz,
ηAT = 0.980 at 50 cm, ηAT = 0.301 at 5 m

• Compute α from conductivity.
α = 0.9954 ± 0.0023  at 26 GHz

• Connected SGH to the DUT plane of the WR-42 
(18 – 26.5 GHz) waveguide radiometer

• Borrowed hot calibration targets from NOAA GSR 
(Al Gasiewski & Marian Klein, NOAA ETL) and 
NASA Goddard (Paul Racette)

• Measured it in the NIST anechoic chamber at 18, 22, 
& 26 GHz for several distances

Rad.

Std.
Ant.

Cryo

Amb

1

0 TB Cal.
Target
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• 5 m results discrepancy probably just due to 
(mis)alignment

• Uncertainty large due to 
large u(ηAT) = 0.0153.  
Would be u(ηAT) ≈ 0.003 
if we knew target 
location better.

targetrails
radiometer

• Summary (standard radiometer)
– Have developed framework and performed preliminary 

measurements
– Expect uncertainties of about 0.5 – 0.7 K for TB = 200 

to 300 K, f = 18 – 26 GHz (Larger uncerts for 
higher/lower temperatures and/or higher frequencies)

– Connection to thermal-vac testing must still be 
established.
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• Most microwave remote sensing
programs use a standard target, 
a blackbody radiator.

• Need to know 
− surface temperature and uniformity (thermometers 

embedded at a few locations in back of target)
− emissivity (no generally accepted standard measurement 

method)
− pattern (or near-field effects)

Standard Target & Hybrid Standard

• Surface temperature & 
uniformity can be measured
by IR imaging. [61]

• Reflectivity of target can 
have significant effect 
(a few kelvins) for small
separation distance. [62]
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• Have also investigated 
– Material properties measurements [63]
– Antenna near-field effect (preliminary) [64]

• Suggest a “hybrid” standard, which would consist of 
a standard radiometer + a standard target. [60]

– Would reduce uncertainties somewhat
– Greater flexibility
– More robust (and credible).

IV.  TERAHERTZ NOISE
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• Unlike the microwave case, we do not have a history 
of noise measurements at terahertz frequencies.  
Need both a standard and a detector/receiver.

• The NIST Terahertz Technology Project has 
developed a terahertz receiver built around a hot 
electron bolometer (HEB) mixer, which they use in 
an imaging system. [65]

• So, use or copy that receiver, and develop a terahertz 
noise standard.

Approach

Full System [66]
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Inside the Cryocooler

Adapter & Detector

28 μm=0.15λ0

THz signal, 
LO

106 μm

HEB device 2 μm 
by 0.5 μm

68 μm
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Mixer Block Integration
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W

LNA Performance [24]
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Variable-Temperature Standard

• Hot circulating oil, ∼ 23 °C – 240 °C
• Surface will be instrumented with thermistors

surrounding image area.
• NIST Physics Lab will measure the total reflectance 

( = 1 − emissivity)
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• Initial measurements, specular reflectance (by L. 
Hanssen & S. Kaplan, NIST Physics Lab):
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V.  STATUS & PLANS
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• Noise-temperature measurements & calibrations 
continue: 30 & 60 MHz, 1 – 65 GHz.

• Working to improve & verify noise-parameter 
measurements for LNAs and for transistors on 
wafers.

• Microwave remote-sensing radiometer-calibration 
effort has been suspended.  If funding becomes 
available, we will proceed with the standard-
radiometer development, and possible the hybrid 
standard work.

• The terahertz noise work is proceeding.  We expect 
to make the first measurements later this year.

Contact Information:

Jim Randa

randa@boulder.nist.gov
(+1) 303-497-3150

NIST Noise publications & slides from talks: links at
http://boulder.nist.gov/div818/81801/Noise/index.html
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